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DEFINITION OF TERMS AND SYMBOIS 

SYMBOL 

Frequency 

Amplitude 

( f )  

fC 

f t  

fS 

At 

Filter 

Gain  function 

DEFINITION 

Cycles per time period,  usually  cycles per second. 

The  displacement of a function  from its zero value. 

The  variable  used to represent  frequencies  occurring  in 
data  in  the  time  domain. 

The angular frequency,  generally  used  in  the  computations in 
the  frequency  domain ( w  = 2d). 'IT = 3.1415926. . . 
The largest  frequency of a low-pass filter whose  amplitudes 
are passed  with  unity  gain  (cycles  per  second) . 

The first frequency of a low-pass filter whose  amplitudes are 
given a zero  gain  (cycles  per  second). 

The  sampling  frequency  (samples  per  second) 

The  time  interval  between  samples or the  sampling  period, 
i i. e. , At =- 

fS 

An object  or  function  operating on frequencies,  referred to 
also as a gain  function. 

The  function  in  the  frequency  domain  that states what 
coefficient  will be a multiplier of each  frequency's amp]litude. 

Frequency  ddmain  Used  here as the  geometrical  plane in which  frequency is taken 
as the  independent  variable  and  gain  functions of frequency as 
the  dependent  variable. 

Time  domain  The  geometrical  plane  in  which  time is the  independent 
variable and  functions of time  the  dependent  variable. 

Weight k c t i o n  The  function of time  resulting  from  the  transformation of a 
fi l ter   or  gain function  from  the  frequency  domain  to  the  time 
domain. 

Weight A numerical  value  obtained  from the weight  function  to  be 
applied to the  data in the  time  domain. 
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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL  REPORT R-179 

DETERMINATION AND ANALYSIS OF 
NUMERICAL  SMOOTHING  WEIGHTS 

Ronald J. Graham 

SUMMARY 

The purpose of this report  is to  present  a  systematic  approach to the derivation 
and  analysis of numerical  smoothing  weights. The text  goes  into  a  detailed  step-by-step 
analysis of the method  used  and  an  appendix  illustrates  some  actual  results. 

In almost all analyses of test  data  results,  smoothing  must be applied  to  numeri- 
cal  data.  Almost  all  numerical  analysts  are  aware of several  different  methods of 
smoothing. When the  question is asked of what  method is best,  there is no direct, 
simple  answer.  Before  attempting  to  answer  this  question,  the  data  characteristics 
must be known. 

Suppose  significant  characteristics of the data  are known - the answer is still  not 
unanimous.  Numerical  smoothing  methods  lack  clear  definitions. In general,  there is 
no standard of comparison  between  different  numerical  smoothing  techniques. 

It is possible to compare  almost all numerical  smoothing  procedures on the 
same  basis by an  extension of the  method  used in this  paper. By using the method  dis- 
cussed,  numerical  smoothing  formulae  can be derived  with  specified  characteristics  for 
specific  applications.  Formulae  that  smooth and differentiate  simultaneously  can  be 
derived by extending  the  concept  discussed.  Other  related  formulae  can  also be derived. 

The known characteristics of the data  are  assumed to be the frequency  character- 
istics of the  data. Many times the significant  frequency  characteristics are known o r  
can  be  determined. In cases  where they a re  not known the validity of applying any 
smoothing  formula  may  be  questioned. (A study and report  of  methods  to  determine 
frequency  characteristics of data is being  planned. ) 



SECTION I. DISCUSSION 

Often in  electronic  terminology,  certain  undesirable  signals o r  indications are 
referred to as high-frequency  noise. A 60-cycle per second  interference  may also be 
referred to as noise. Filters are used to eliminate known undesirable  noise  and  to 
Ifclean"  the  data. Filters are selected  such  that  frequencies  carrying  valid  data of 
specific  interest are allowed to pass with a specified  gain  function  while  other  frequen- 
cies are rejected.  The  desired  gain  function is basic  in  determining  the filter design. 
Once the filter is designed  the  response o r  output  characteristics  must  be known o r  
evaluated.  Most  desired  gain  functions  can be represented by a mathematical  function 
definition  in  the  frequency  domain  for all frequencies.  This is equal to the  desired 
filter. However,  the  output of the  desired filter is not  completely  precise.  This is 
demonstrated by the  Gibbs  Phenomenon. An accepted  technique is to allow  tolerance 
in  the  filter  design,  thus  yielding  more  precise  output  results.  The  design,  development, 
and  use of electronic filters is a scientific part of electronic  engineering. 

Many numerical  smoothing  formulae  used by digital  data  processing  experts are 
inherited  ("hand-me-downs") o r  taken  from  famous  textbooks. In some  cases  the  ap- 
plications of these  methods  must  be  considered  unscientific.  However,  numerical 
smoothing  can be accomplished on the same  scientific  basis as electronic  filtering by 
using  the  method  discussed  in  this  text.  Numerical  methods  have  advantages  over  elec- 
tronic  methods.  Some of these  advantages will be listed later. 

The filter o r  gain  function is defined  in  the  frequency  domain;  that is,  where 
frequency (a) is the  independent  variable  and  gains of frequencies ( H (  w)  ) is the  de- 
pendent  variable.  Data are finally  analyzed  in  the  time  domain,  where  variables  can be 
expressed as functions of time. 

The gain  function o r  filter  in  the  frequency  domain  can be transformed to a weight 
function in  the time  domain and vice-versa.  The first function is an inverse  Fourier 
transformation.  The  second  function is a direct  Fourier  transformation. 

Since  these  transformations  can be applied, a smoothing  function  in the time 
domain  can be transformed to a filter in the  frequency  domain,  and a filter in the fre- 
quency  domain  can be transformed into a smoothing  function  in  the  time  domain. 

In electronics,  filters and filtering  techniques are widely  used. Fil ters are 
usually  specific  parts of electronic  hardware. An analog  electronic  computer  performs 
the  operations of smoothing,  differentiating,  and  integrating  in  the  time  domain.  These 
operations  are  analogous to filtering  in the frequency  domain. 

Rough or  unsmoothed  numerical  data  can  also be considered as data  containing 
noise. Some erroneous o r  undesirable  data,  similar to  high-frequency  noise, are 
recognized by a sudden  change in magnitude  within a small  time  interval.  Numerical 
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data  may  also  contain a slow  varying  bias which  may  be  considered  low-frequency  noise. 
Numerical  data,  such as round-off e r r o r ,  may  contain  cyclic error   that  could  be  con- 
sidered  constant-frequency  noise.  Smoothing  can  be  used to eliminate  these types of 
undesirable  noise. As in electronic  data,  certain  numerical  digital  data  may  contain 
composite  data  values. By selecting  proper  .weighting  formulae  these  composite  data 
values  can  sometimes be  decomposed. 

Numerical  'smoothing  weights  can  be  derived by identifying  frequencies of interest 
or by identifying the undesirable  frequencies. When these  frequencies are determined, 
the gain  function  must be defined  for  all  frequencies. This gain  function  defined  for all 
frequencies is the filter. The  value of the  gain  function  at  the  frequencies  that  are  to  be 
eliminated or  not  considered  should  be  zero. The value of the  gain  function  where  the 
frequencies  are  to pass through  undisturbed  should  be  one. An inverse  Fourier  trans- 
formation  should be applied  to  this  gain  function.  The result  will be a weight  function  in 
the  time  domain. 

The problem of determining  smoothing  weights  in  the  time  domain,  therefore, is 
transformed into  a  problem  in  designing  a  filter  in  the  frequency  domain.  Some  advan- 
tages of designing  a  filter  to  determine  smoothing  weights  rather  than  using  other  tech- 
niques  in  the  time  domain  follow: 

I. Filters  are  easily  designed. 

2. The design of filters  has  great  flexibility. 

3. The  method is systematic and has  a  straight-forward  approach. 

4. Filters  can be  used  as  a  standard  to show  the  extent of smoothing. 

5. The output of filters  can be  evaluated  before  application. 

An infinite  number of types or  sets  of filters  can be  designed. A simple,  logical 
type of filter  for  determining  smoothing  weights is given  in  this  report. 

The technique of designing  a  filter and determining  related  numerical  weights in 
the  time  domain is called  numerical  filtering. Some advantages of doing  numerical 
filtering  rather  than  electronic  filtering follow: 

I. Numerical  filtering  has  higher  fidelity.  (Digital  calculations  can  be  repeated 
identically. ) 

2. The  problem of phase  shift  can be diminished. 

3. Feedback  problems  can  be  eliminated. 
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4. Numerical filters are not  hardware bound  and can  be  designed  readily. 

5. Numerical filters can  be  changed  instantaneously. 

6. Numerical filtering .can be  used  more  directly  in  high-speed  digital  computer 
applications. 

7. Numerical  filtering can be  done after electronic  filtering to  obtain  more 
precision,  and  to extract erroneous  signals  such as feedback. 

One  of the  drawbacks of numerical  methods  such as this  one  has  been  the  require- 
ment of many digital  calculations.  However,  with  the  great  advancement  in  high-speed 
electronic  digital  computers,  such  numerical  methods are becoming  more  feasible. 

SECTION II. THE FILTER DESIGN 

To design a filter, work is done in  the  frequency  domain. 

w, the  frequency, is the  independent  variable.  H(w) is the  gain  function of the  frequen- 
cies ( -  00 to +w) . This  function is necessary to  allow  application of the  Inverse  Fourier 
Transformation. Of the  infinite  possible  designs, a simple  one is chosen  for  this  report. 
This  design is a low-pass filter with  the  following  functional  definition: 

H ( w )  = H(-u)  

H(  W )  = 0; Iw12 wt (the  termination  frequency) 

H( W )  = 1wI s wc (the cutoff frequency) 
c 7 

H(w)  = +  { C O S b  A w  +I}; -ut 5 w5 - 
wc + w 

O C  

A w  C t 
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From this basic  low-pass filter design,  the  following  type filters can  be  derived: 

I. High-pass filter 

2. Band-pass filter 

3. Band-reject o r  notch filter 

4. A linear  combination of these  three  and  low-pass filter. 

The  high-pass filter is the  complement of the  low-pass filter, i. e. , their sum 
yields a filter that  allows all frequencies to pass. TIhe all-pass filter allows all fre- 
quencies to pass as they are. It  has  weights of all zero,  except  that  the  central  weight 
is unity,  that is, O,O,. . , I , .  . , 0,O. The  weights  for  the  high-pass filter can be obtained 
by subtracting  the  low-pass  weights  from  the  all-pass  weights. 

The  band-pass filter is the  difference  between two low-pass filters. The weights 
of the band-pass filter can be obtained by taking  corresponding  weight  differences be- 
tween two low-pass filters. 

The band-reject o r  notch-filter  weights  can  be  obtained by subtracting the  band- 
pass  weights  from  the  all-pass  weights. 

Linear  combinations of effective filters can  be  obtained by taking  linear  combina- 
tions of corresponding  weights. 

Results  to  substantiate  these  statements are given  in  the  appendix. 

The inverse  Fourier  transformation is applied to the  basic  low-pass filter. Other 
weights  can  be  derived as explained  above. 

SECTION III. THE INVERSE FOURIER TRANSFORMATION 

The mathematical  transformation is presented  here  in  detail.  Equation 2 is the 
resulting  weight  equation. iH( w)1 = H(w)  

tl 
-W t -w 

C b 0 w 
C t 
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Function  definition: 

Find: 

0 

from 

h(t)  = A + B + C 

where 

A =i 2 n  lire {'Os 2 e iwt  dw 

and 

A U = U  "W 
t c  

where 

A =.Ai + A, 
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also, 

c = c, + c2 

with 

1 c, =x Iwwt eiwt dw 

C 

In solving Ai, 
I? 

W f W  

set x = 
C 

Aw ’ 
then 

w = AWX - wC, AW dx = dm. 

When 

w = -w x = -1. t’ 
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Hence, 
PO 

i i(Awx - wc)t 
Ai =- 4n 

cos 7rx e dx(Aw) 

f 0  
" Aw -iwct iAwxt Aw -iwct  

e  cos n x  e &=-  4 e - 
47r 

2 (iAwt  cos n x + T sin 7r 
Aw -iwct 

e 

Integration  formula No. 314 Burington: 

I iwt wt I -iw t  -iwtt iw t ioc t  
+ e  ) w J  - 4mt 

e c -e + e  t -e 

I 1 
" - 

4nit 
2i  sin w t - 2i sin wct = - s in  w t - sin w t 

t 2nt  t C 

Solving for C,, 
w - w  

C 
Set Y = Ah, , AW dy = dm, w = Awy + w C 

then 

when 

w =  ut, y = i 
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and whe3 

w = w  y = o  
C' 

AweiWct 1' cos ny e 
Aueiwct ( iAwy t iAqt dy = e 

47r 4n ( n2 - (Aut) 2 (iAwt cos ny + ?r sin ny) 

Awe i w c t  [ e 
iAwt (-iAwt) iAw t - - - 

4n n2 - (Aut) r2 - (Aut) 

r 1 
- Aw (Aut) i iott i w c t  Y - I -e 

- e  

A," + Cf = 
Aw (Awt) i -iw t i w t t  i w t t  iwct  
47r [ 7r2 -(Aut) '1 ( e   + e   - e  -e  

- -iAw (Awt) iott iwtt ioct  -iwct - 
47r [ 7r2 - (Aut) 3 2 ( e  - e  + e  - e  ) 

- - -i (Aw) 2t 
47r [ 7r' - (Aut) 2 ]  

(2i  sin w t t  + 2i sin act) 

(Am) 2t (sin w t t  + sin w,t) = AI + Cl* .y. - - 
2n [ 7r2 - ( A u t )  2 ]  

-The  total  answer is 

AI + Cl + B + A2*+ C,"= 
* + (Aw) % 

27r [ 7r2 - (Aut) '1 

s in w t 
C + 1 (sin wtt + sin act) + 

7rt 2n-t t C 
(sin w t - sin w t) 

- (Aw) 't 1 - 
2n [x2 - (sin w t + s in  w t) + - (sin w t + sin w t) t C 2nt  t C 

1 
2nt  

h(t)  =- (sin w t +.sin w t) t C (7r2 - (ut - wc) '2)  

- 3 
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2t 7r2 - (ut  - wc) t 2 2  

SECTION IV.  THE RESULTING WEIGHT  FUNCTION 

The  weight  function  just  derived  from  the  inverse  Fourier  transformation is de- 
fined  in  the  time  domain  to be: 

- (u t  - wc) 2 t 2  

This is the  basic  function  from  which  numerical  smoothing  weights are derived. To 
obtain  weights  from  this  function  the  following  constants  must  be  defined: 

I. The  number of weights  desired.  This  number  must be odd. 

2. The  sampling  interval of the  data  (At). 

3. The cutoff and termination  frequencies ( wc and at). 

To obtain  weights  evaluate  h(t)  at  distinct  points, hn, where hn = At h( tn) ;  
tn = n  At; n = 0, 2 1, . . . , +N. When the  weights, hn,  have  been derived, apply  the 

constraint 2 hn = 1. 
N 

n=-N 

The weights are now ready to be  applied  to  the  data. 

A direct  Fourier  transformation  can  be  applied  to  the  numerical  weights to de- 
termine the actual  filtering  effect  that  application would accomplish.  A  sum  must be 
substituted  for  an  integral  in  the  Fourier  equation.  This  result  can be considered  the 
output filter. The comparison  between  this  filter  and  the  original filter shows  the  pre- 
cision of the  output  filter. 

SECTION V. ERROR ANALYSIS  AND  THE  EVALUATION OF SMOOTHING  WEIGHTS 

The basic  equation  used in evaluating a se t  of smoothing  weights is the  direct 
Fourier  transformation. 
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H(w) = h(  t) e-iwt dt. 

However,  since  discrete  numerical data are to  be  used,  the  equation  becomes, 

A N 
H(w) = 1 h(t,) e 

-iwtn 

At 
n=- N 

Since h (   t )  is evaluated  at  certain  increments, i. e. , tn = n  At, h (  tn) becomes 
h ( n  At) , which,  with constraints  applied  becomes hn (the  smoothing  weights).  There- 
fore,   for any se t  of ( 2 N  + 1) smoothing  weights, hn, where n = 0, +i, t-2, . . . , +N the 
filter o r  the  transfer  function  can  be  determined by 

A N  
H(w) = 2 h n e  -inAto 

-N 

This  equation  can  be  applied to a se t  of ( 2 N  + 1) weights  to  determine  their  smoothing 
characteristics  in  the  frequency  domain.  The  equation  can  be  rewritten 

A N  
H ( w )  = hn  (cos n A t w - i sin n At  w )  

-N 

which reduces to 

-N 

In the case of the filter design  and  weight  determination as in  this  paper  where & = 11-, 
we have 

Equation 4 can  be  used to determine  the  actual  functional  filter output. This  equation 
can  be  compared  with  the  original  design  to  determine  the  error involved. Equation 4 
can  also be used to evaluate any s imil iar   se t  of numerical  weights  where = 11-,. Some 
evaluations  of  weight  sets are shown  in  the appendix. 



SECTION VI. LIMITATIONS AND FACTORS  THAT  INFLUENCE ACCURACY 

Also of special  importance is the  cutoff frequency, fc. This is the  highest  fre- 
quency in the basic  low-pass filter that  has  unit  gain. 

Between  the cutoff frequency, fc, and  the  termination  frequencg, ft ,  is the  roll- 
off interval  where  the  gain  decreases  from i to 0. The  roll-off  should  occur  at  fre- 
quencies  that are  not  predominant  in the data. If there are frequencies  occurring in the 
data  at  the  roll-off  interval  but  have no importance,  then a preliminary  notch filter can 
be used to eliminate  these  frequencies'  from the data  before  application of the desired 
filter. 

SECTION VII. CONCLUSION 

The results  that  determine and analyze  numerical  smoothing  weights are so 
simple  that  they are likely  to  be  overlooked  while  reading  the text Numerical  smoothing 
weights are determined by equation 2. Numerical  smoothing  weights  are  analyzed by 
equation 4. 

More  details of using  these  equations  in digital computer  applications are given 
in the Appendix. Results of applying  these  equations are also  given  in  the Appendix. 
Results  given  are  not  intended  to  show  the  best results of applications  but are given 
because  they  were  available at the time of publication.  Rules are given  on how to obtain 
more  accuracy  and  precision. 
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APPENDIX  A-i 

SECTION I. DIGITAL COMPUTER  APPLICATIONS 

The first equation  to,be  programmed  for  the  digital  computer is the  weight  equa- 
tion in  the  time  domain,  that is; 

where f i s  the  frequency  occurring  in  the  data  in  the  time  domain.  Then wc = 27r f c  and 
a t  = 27r ft. This  weight  equation  when  applied to the data has  the effect of a low-pass 
filter with a cutoff frequency of fc and a termination  frequency  of ft. 

f = frequency 

G(f) = Gain  function of f 

fc ft 

G(f) = H(w) = H(27rf).  

Plots are usually  made  with f the  independent  variable  and  G(f)  the  dependent  variable. 

From  equation 2 a se t  of numerical  weights  must  be  determined. 

Determine  this  set of weights as follows: 

I. Define f c  the cutoff frequency. 

2. Define f t  the  termination  frequency. 

3. A t is the  time  interval  between  adjacent  numerical data values. 

4. Define ( 2  N + i )  as the  number of weights to be used  (where N is an integer). 
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5. To keep  maximum e r r o r  of the  frequency  gain  in  the  interval (0 5 f 5 f c ) ;  
. at approximately I per  cent, set N(A  t) ( f t  - fc)  2 2; at approximately  1/2  per  cent,  set 

N(At) (ft - fc) 2 3. At  and f c  are usually  fixed;  however, f t  and N can  vary  such  that in 
many cases the  conditions  above  can  be  met. [ The  statements  above were determined 
by a ser ies  of applications. ] 

Example I. At = 0.1, fc  = 3 and  approximately i per Cent maximum e r r o r  is 
N 
i o  desired,   set  f t  = 4 and we have N(  0. I) (4-3) 2 2 o r  - 2 2. Hence Set N 2 20. 

Example 2. At = 0. O i ,  fc = 10 ,  f t  = 10.5  and  maximum e r r o r  of approximately 
N 

1/2 per  cent is desired, so tnat  N(0. O i )  (0 .5)  2 3 o r  200 2 3. Hence, s e t  N 2 600. 

Find  (2N +i) weights [ h-n,  h-n+i, . . . , ho, . . . , hn-i, hn] by evaluating  equa- 
tion  2 as follows: 

Let 

t = n A  t, 

then 
n At  + sin w n At 

h ( n  A t) = ~ 

C 
2 2n At - (at - wc) (n 

Evaluate  for  n = I, 2, 3, . . . , N keeping  in  mind  that  h(n  At) = h (  -n At) thus 
obtaining 2 N values  and  h(o) = fc + f t  which  gives  the  central  value of the (2N+I )  values. 

Now the  value  must  be  norm'alized,  that is each  h( n At)  and h (  0 )  must be divided 
N 

by h (n  At)  which is the sum of all the  (2N+i)  values.  The  latest  values j u s t  ob- 

tained are the  weights  to be applied  to  the  data  and a re  denoted by (h-n, 1 1 - ~ + ~ ,  . . . , ho , 
. . . , hn-l, h) . The  weights are applied  to  (2N+i)  data  points as the scalar  or  dot 
product is found in  vector  analysis, to  obtain a smooth  data  point,  which  will  correspond 
to the central  point of the set  of data  points to which  the  weights are applied,. 

n=-N 

Example:  Denote  the  (2N+i)  data  points by dl,  d2, . . . , dN+i, . . . , d,N+i,  then  the 
smoothed  data  point  d' N+i is given  by: 

N 

d'N+I = hnd(N+n)  +i n=-N 
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and 
N - 

d'N+2 hn (N+n) +2' 
= A  

n=-N 

Note. In this  example  the  smoothed  data  points start at the (N+I)  point.  To 
have  smooth  data  beginning  corresponding  to  the first data point a special  starting  pro- 
cedure  must  be  used. To s t a r t  the  smoothing  procedure at the  initial  point  assume  data 
values  to  the  left  equal to those to the  right, i. e. , if raw  data  starts  at ds, then set 
ds+k = d,-k, k = I, . . . , N. The same method can  be  applied  to  the  end  point  de, i. e. , 
de-]<=  de+kl<= I ,  2,  ... , N. 

The  information  above  gives  details  on  obtaining a set of weights  for  digital 
computer  applications.  Applying  such  weights  has  the  same  effect on the  data as a low- 
pass  filter. 

A s  previously  stated,  the  weights  which  have  the  effect of a band-pass  filter  can 
be obtained by subtracting  corresponding  weights of two low-pass  filters. 

f f  c s  ts f 
C i  fti 

0 itf f f  c s   t s  f ci f ti 

B =  

A - B  

Observe  in  the  frequency  domain  the  difference  between two low-pass  filters 
yields a band-pass  filter.  Since  the  transformation  in  the  time  domain is a linear 
operation,  subtraction of corresponding  weights  produces  the  desired results. 

Note. For  a band-pass  filter two cutoff frequencies  and two termination  frequen- 
cies must  be  given. For  example, A above must have a defined cutoff frequency, fc l ,  
and a termination, ftl; likewise By (fcs, f ts) .  

The  bandwidth is ( fc l  - fcs) o r  ( f t l  - fts) , and  must be selected  to  give  the 
proper  range of frequencies  around  the  center  frequency of interest. Too narrow 



a bandwidth  will only  give a portion  of  amplitude of the  center  frequency; too wide a 
bandwidth will  give  amplitudes  from  undesired  adjacent  frequencies.  Several runs on 
data have  shown that a satisfactory bandwidth is defined  by: 

N A t (bandwidth) = 0.5 ( 6) 

o r  

bandwidth = 
0.5 

N A t  

The  all-pass filter is defined as a filter which  will  allow all frequencies  to  pass. 
The  weights  in  the  time  domain of such a filter are all zero (0) except  the  central 
weight,  which is unity, i. e. , 0,  . . . , 0 ,  i, 0 ,  . . . , 0. Thus all data  will  pass  through 
this filter unchanged. This filter is very  useful  mathematically to produce  other  types 
of filters as shown below. 

Weights of a notch filter o r  band-reject filter are found by subtracting  the 
weights of a band-pass filter from the corresponding  all-pass  filter weights. That is, 
change  the  sign of all the  band-pass  weights  except  the  central  weight which is to be sub- 
tracted  from unity. 

The weights of the  all-pass  filter  minus  the  corresponding  weights  of a low pass 
filter yield  the  weights of a high-pass filter. 

SECTION II. EVALUATION OF A SET  OF SMOOTHING  WEIGHTS 

Refer  to  Section V in  the  main body of the  text, for review. 

From a set of weights, {h}, N and At should  be known. Hence the  variable  in 
this  equation is w = 2 7r f. Hence f becomes  the  independent  variable. 

1 f =- 
s A t  ’ 

hence 

f 
S 1 
2 2 A t  
”- - 
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a A A A A A  N 
G( ) = H(271-f) = H(w)  and G(-f) = G(f).  G(fs) = ho + 2 cos 27r n 

N A A  
= h0+2 hn = G(0) = G(fs). 

n= I 

Consider  the  function 

f  f 

2 
c o s n A t 2 ~ f + s i n n A t 2 ~ -   s i n ( n A t 2 r f ) .  S 

n= 1 1 
f 

Notice, n A t 2 7r - = n x and  sin n x = 0. S 

4-f 
Likewise  in G(- + f )  , th’; second  term  will  be  zero,  and the first  term  will  be  the 
same. 2 

Hence 

G p - f ) = G p + j .  

A 
So when G(f) is determined  in  the  range 0 5 f 5 it is essentially  completely de- 

termined by the  equations  above.  The  results  obtained by evaluating  G(f) are sym- 

metric about a folding  frequency, - . This  means  in  some cases amplitudes of unde- 

sired  higher  frequencies  will  fold  back  on  amplitudes of frequencies  in  the  range of 

(0  5 f zs - )  . A routine  approach to minimizing this problem is to  use a higher  sam- 

pling  frequency  to  reduce the fold-back effect. 

( 4  A 

fs 
2 

fS 

2 
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SECTION III. ACTUAL DATA  RESULrTS 

The  following  functions  were  computed at 0.01 second  intervals. 

I. (0.3687)  cos 27r t i cycle  per  second  (cps) wave 

2. (0.5)  (0.3687)  cos  [4n(t + 0. I ) ]  2 cps 

3. (0.33)  (0.3687)  cos  [67r(t+0.1)] 3 cps 

4. (0.25) (0.3687) cos [ 8n ( t  + 0. I ) ]  4 cps 

5. (0.2)  (0.3687)  cos [ l O n ( t  + 0. I ) ]  5 cps 

Then  the  composite  function f ( t )  = 1+2+3+4+5 was  computed. The graph of this 
function is given in Figure 1. The  numerical  filtering  technique  was  then  applied to the 
composite  function  in  an  effort  to  obtain  data of specific  cycles of interest. The results 
of the  efforts are given  in Figures 2, 3, and 4 and in  tabulations  following  these  figures. 

Even though application  usually  extended  over  several  periods of the data  involved 
only  one period of data is given in the plot. The  parameters  involved are stated  in  the 
legend of the  figures. 

The following  data  verifies  that a high-pass filter is the  complement of a low- 
pass  filter. N = 50, t = 0. I,  fc  = 3.99, f t  = 4.01  for  low-pass. 

A B C 
Tim e Result Result Sum Original 

Low-Pass High- Pass  A + B  Composite  Data 
Complement 

0 .0  
0 . 1  
0. 2 
0.3 
0.4 
0.5 
0.6 
0 . 7  
0. 8 
0 .9  
I. 0 

+O. 3483 
+O. 0670 
+O. 0756 
-0. 0558 
-0.1895 
-0.3099 
-0.3356 
-0. 3442 
+O. 0941 
+O. 6501 
+O. 3483 

-0.1086 
+O. 0859 
-0.0577 
+O. 0356 
-0. 0276 
+O. 0350 
-0.0586 
+O. 0850 
-0.1091 
+o. 1201 
-0.1086 

+O. 2397 
+O. 1529 
+O. 0179 
-0.0202 
-0.2171 
-0.2749 
-0.3942 
-0.2592 
-0.0150 
+O. 7702 
+O. 2397 

+O. 2397 
+O. 1529 
+O. 0179 
-0.0202 
-0.2171 
-0.2749 
-0.3942 
-0. 2592 
-0.0150 
+O. 7702 
+O. 2397 
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FIGURE I. ORIGINAL COMPOSITE DATA 
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FIGURE 2. COMPOSITE AND FILTERED 0-1 CPS 
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The  following  tabulations  show  the  evaluation of band-pass filter weights.  Weights 
were  derived  from  low-pass filters extending  slightly  beyond  the  center  frequency of 
interest.  The  weights  were  then  processed  through a correction  routine, as described. 
in  Reference I. Corresponding sets of weights  were  derived,  and  processed  the  same, 
from filters that  terminated  just  prior to  the  frequency of interest. The  heights  derived 
from  the  over-extended filters minus  corresponding  weights  derived  from  the  under-ex- 
tended filters yielded  the  weights of the  band-pass filters. The  frequency ( f )  of interest  
was  three  cycles per second. 

N = 50, At = 0. I 
A A 

Case No. B. W. f G(f)  Desired  G( f )  

I 0 . 0 3  3 0 . 0 3  I. 00 
2 0 .05  3 0.  05 I. 00 
3 0 . 0 7  3 0. 07 I. 00 
4 0 . 0 9  3 0 . 0 9  I. 00 

A 
The bandwidths  were too small.  It is seen when f = 3, G(f) < < I. The data 

shows  the  bandwidth (B. W. ) should  have  been  equal to 1. 

N (At)  (B. W.)  = O .  5 ( 6 )  

The best  results were  obtained by enforcing  equation 6 .  

A two-cycle  band-pass  filter  was  derived  using  the following parameters: 

N = 50, At  = 0. I ,  B. W. = 0 . 2 1  

For  the  low-pass  filter  extending beyond 2 cps, Fc = 2 . 0 7 ,  Ft = 2.14. For the  low-pass 
filter  terminating below 2 cps, fc  = I. 86, f t  = 1. 93. The  smoothing  weights  derived 
were  applied  to  the  domposite  data  plotted  in  Figure I at 0.1 second  intervals. 

The sign of all the  band-pass  weights  was  then  changed  except the central  weight, 
which  was  subtracted  from unity.  The resulting  weights  were  then  applied to the  data 
(notch o r  band-reject filter). Results are listed below: 
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Composite  .Original  Band-Pass  Notch Band- Pass 
Time  Data 2 Cycle  Result  Result + Notch 

0.0 
0. I 
0. 2 
0. 3 
0.4 
0. 5 
0. 6 
0. 7 
0. 8 
0. 9 
I. 0 

+O. 2397 
+O. 1529 
+O. 0179 
-0.0202 
-0.2171 
-0.2749 
-0.3942 
-0.2592 
-0.0150 
+O. 7702 
+O. 2397 

+O. 0569 
-0.1491 
-0.1491 
+O. 0569 
"0.1843 
+O. 0569 
-0.1491 
-0.1491 
+O. 0569 
+O. 1843 
+O. 0569 

+O. 0649 
-0.1731 
-0.1728 
+O. 0661 
+O. 2143 
+O. 0670 
-0.1713 
-0.1716 
+O. 0658 
+O. 2109 
+O. 0649 

+O. 1748 
+O. 3260 
+O. 1907 
-0.0863 
-0.4314 
-0.3419 
-0.2229 
-0.0876 
-0.0808 
t-0.5593 
+O. 1748 

+O. 2397 
+O. 1529 
+o. 0179 
-0.0202 
-0.2171 
-0.2749 
-0.3942 
-0.2592 
-0.0150 
+O. 7702 
+O. 2397 

Results  show  that  band-pass + notch  equals  original  composite  data. 

Figure 5 illustrates  the  actual  results of a filter designed  with a cutoff frequency 
of fc = 0.65 and a termination  frequency of f t  = 0. 70. Other  parameters  were At = 0. 1 
and N = 50. Hence, N( At) (Af) = 0.25. It is recommended  that N(At )  (Af) > 0.5 be 
used. 

A N 
The  plot  was  determined  using H (a) = ho + 2 2 hk cos  (k At  w )  . The maximum 

k=l 
fS 

A A 

error   in  the  interval 0 5 f 5 fc occurs  near fc,  and  in the interval, f t  5 f 5 - , the 
maximum error   occurs   near  ft. 2 

If the  plot  had  been  extended  to a frequency = 10, H(1O) would equal H ( 0 ) .  The 
sampling  frequency  must be greater than  twice  the  highest  frequency  to  be  considered. 

Example: A test was run in which  the  valid  data  was known to  be  in  the low frequency 
range of 0-3 cps.  The  numerical  data  were  sampled at 10 samples  per  second. A 

termination  frequency of 4 cps  seemed  reasonable as - > 4. However, a closer  look 

at the data showed an  interference  frequency of 10 cps.  Such a sampling  rate would 
allow 10 cps to pass  with  gain of I. Hence a new sampling rate must be chosen at 
greater than 20 samples/sec. It is recommended  that  such  data be sampled at 100 
samples  per  second. 

10 
2 

Figure 6 illustrates  the  transformation of Dederick's  smoothing  coefficients  in  the 
time  domain  to  the  equivalent filter in  the  frequency  domain.  The  figure  shows  the  plots 
of 3 sets of smoothing  weights,  each  consisting of 21  points. 
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FIGURE 5. LOW PASS FILTER 0-0.65 
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Equation 4 is used  here to evaluate a set of weights  that are determined  through 
the filter technique.  The transfer  functions  were  based on weights to be  applied to data 
at 0. I-second  intervals, i. e. , At = 0. I. 
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